A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem
نویسندگان
چکیده
In this paper, we study the a posteriori error estimate corresponding to Brinkman–Darcy–Forchheimer problem. We introduce variational formulation discretized by using finite element method. Then, establish an estimation with two types of indicators related discretization and linearization. Finally, numerical investigations are shown discussed.
منابع مشابه
Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA Posteriori Error Estimates for the Steklov Eigenvalue Problem
In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. Finally, we prove that the vo...
متن کاملA Posteriori Error Estimates on Stars for Convection Diffusion Problem
In this paper, a new a posteriori error estimator for nonconforming convection diffusion approximation problem, which relies on the small discrete problems solution in stars, has been established. It is equivalent to the energy error up to data oscillation without any saturation assumption nor comparison with residual estimator.
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملOn A Posteriori Error Estimates
Consider a sequence {xn}n—Q in a normed space X converging to some x* £ X. It is shown that the sequence satisfies a condition of the type ||x* -x„|| < oi||xn xn_¡\\ for some constant a and every n > 1, if the associated null sequence {e„}„=q, en = x* — xn, is uniformly decreasing in norm or if it is alternating with respect to any ordering whose cone of positive elements is acute.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational & Applied Mathematics
سال: 2021
ISSN: ['1807-0302', '2238-3603']
DOI: https://doi.org/10.1007/s40314-021-01647-8